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Abstract

Mathematical models for the mechanical coupling between a moving fluid and an elastic solid are inherently

nonlinear because the shape of the Eulerian fluid domain is not known a priori – it is at least partially determined by the

displacement of the elastic solid. In this paper, a first-order system least squares finite element formulation is used to

solve the nonlinear system of model equations using different iteration techniques, including an approach where the

equations are fully coupled and two other approaches in which the equations are decoupled. The discrete linear system

of equations is solved using an algebraic multigrid solver as a preconditioner for a conjugate gradient iteration. The

numerical results show that the approach is optimal in the sense that computational cost is proportional to the degrees

of freedom. The results also show that the choice of iteration method, from fully coupled to fully decoupled, does not

significantly effect computational cost, but it does influence the error in the solution.
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1. Introduction

The mechanical interaction between a moving fluid and a flexible solid is an important problem in many

engineering fields. The approach taken in mathematically modeling this interaction, however, strongly

depends upon the properties of the fluid, fluid velocity relative to the solid, and properties of the solid. The
focus here is on a moving Newtonian fluid with a Reynold�s number between 0 and 500, which deforms an

elastic solid with mechanical properties similar to a soft tissue. This range of properties describes many

important fluid–tissue interactions in living organisms. Both the Newtonian fluid and the elastic solid may

be mathematically modeled using well-known differential equations, but a number of difficulties exist for

numerically approximating the solution to the coupled system of equations. First, the computational costs
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for most standard techniques do not scale linearly as the problem size is increased. Second, it is often

difficult, if not impossible, to accurately measure the local error in a meaningful norm. To address these

limitations, a first-order system least squares (FOSLS) finite element approach is applied to the equations
describing the mechanical coupling between a steady Newtonian fluid flow and an elastic solid. The goal is

to develop a general approach that provides optimal scalability and a sharp error measure on model

problems. The approach could then be extended to more specific applications.

The coupled fluid-elastic problem requires consideration of two different domains – the no-flow domain

with the elastic solid at rest and the deformed domain with the moving fluid displacing the elastic solid.

First, the no-flow domain is shown in the left half of Fig. 1, and this domain is separated into a fluid region

(Xn) and a possibly multiply connected elastic region (XE). The equations for the elastic solid are normally

defined from the rest position of the solid, so they are based on this no flow domain. Second, the deformed
fluid/solid domain is shown in the right half of Fig. 1, and the fluid region is denoted as Xx. The fluid

equations are typically defined on the deformed domain. The interface between the two domains is Cx in the

deformed case and Cn for the no flow domain. Mechanical coupling between the domains requires the

traction to be continuous along the interface between the fluid and elastic solid regions. In the case of a

non-steady problem, the velocity must also be continuous. The position of the interface and the final shape

of the deformed fluid domain are not known a priori. The problem therefore requires an iterative solution

technique and demonstrates nonlinear character even if the fluid equations and elastic equations are linear.

A number of methods have been developed to solve this nonlinear problem, and these methods may be
grouped into three categories: decoupled methods, partially coupled methods, and fully coupled methods

(Fig. 2).

The most common method for solving coupled problems is a fully decoupled approach. The basic idea is

to first solve the equation(s) describing the fluid on a fixed domain. The wall stress along Cx from the fluid

solution is then used as a boundary condition when solving the elastic equation. The solution to the elastic

equation includes a new position for the interface. At this point, the shape of the fluid domain has changed.

Depending on the solution approach, additional equations may need to be solved to move nodes associated

with the fluid discretization, or the new fluid domain may be mapped back to the original fluid domain.
This process must be repeated until the boundary is no longer moving significantly and the traction is

sufficiently continuous between the fluid and the solid. The primary difficulty with this approach is the

potential for slow convergence and the lack of a guarantee, a priori, of convergence even if a good initial

guess can be provided [1]. However, one advantage of this method is that memory requirements (and

possibly CPU requirements) can be significantly reduced by decoupling the fluid, elasticity, and remeshing/

remapping equations. Another advantage is that the iterations in the fully decoupled approach are fre-

quently replaced with time steps. In this case, small time steps are often required to maintain a stable

solution [2].
Fig. 1. The no-flow fluid (Xn) and elastic (XE) domains (left) and the deformed fluid domain (Xx, right) for a coupled fluid-elastic

system with the initial interface Cn and the deformed interface Cx.
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Fig. 2. Summary of the three basic methods to solve coupled fluid-elastic problems.
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A simplified version of the fully decoupled approach is frequently used in modeling blood flow with the
elastic domain treated as a thin shell [3,4]. The viscous shear stress is typically ignored [5], resulting in

displacement only in the radial direction. An important related method is the immersed boundary method

developed by Peskin [6], which uses a regular structured grid over the fluid domain, with the elastic

boundary expressed in terms of a localized force distribution (Dirac delta functions) within the regular grid.

The advantages of the immersed boundary method include the ability to use a straightforward finite dif-

ference approximations and the computational savings from not having to move the mesh over the fluid

domain. The immersed boundary method can have problems with numerical stability if explicit time

stepping is used [2], and the use of discrete delta functions prevents the method from achieving more that
first-order accuracy [7].

A second method for solving coupled fluid-elastic problems is to solve the fluid and elastic equations as a

coupled system of equations, but keep the moving mesh process separate. The fluid domain changes shape

based on the elastic deformation, so, after completing each linearized iteration of the coupled system, the

fluid mesh is moved or the fluid domain is remapped before solving the coupled system again. The first

advantage to this method over the fully decoupled method is that continuity of interface tractions can be

assured [8]. Under the fully decoupled approach, the interface tractions often must be transmitted between

two different codes, resulting in a weakly continuous interface traction. The second advantage is that fewer
iterations are typically required because the Jacobian matrix contains terms coupling the fluid and elastic

domains. This helps to prevent the oscillating convergence sometimes observed with the fully decoupled

method [1]. The primary disadvantages to coupling the fluid and elastic equations are the increased memory

and potentially increased computational costs, although they can be somewhat reduced by modeling the

elastic domain as a shell [9].

The third method is similar to the second, except the remapping or remeshing equations are solved si-

multaneously with the fluid and elastic equations. The result is a large system of coupled equations that

potentially requires a large amount of memory to store the complex Jacobian matrix [10]. The advantages
of this approach include quadratic convergence as the solution is approached and the fact that the full

Jacobian contains information about the stability of converged solutions to small perturbations [10]. A final

advantage is that the sensitivity of the solution to changes in parameter values is easy to predict using the

full Jacobian [11].



J.J. Heys et al. / Journal of Computational Physics 195 (2004) 560–575 563
The approximate solution found by using each of the three methods is not always the same solution. For

example, if one views finding an approximate solution as minimizing the error in some norm, then it is

easier to see why they can be different. In method 1, error in the fluid equations is minimized for a given
domain, then error in the elasticity equations is minimized using a given traction constraint, and, finally,

error in the remapping or remeshing equations is minimized for a given displacement constraint. In method

3, the sum of the error for all the equations is minimized at once, meaning that error could potentially be

increased in some equations to reduce large error in other equations.

Another way to illustrate the relationship between the three methods is to view each method as

solving a nonlinear problem using Newton�s method. In method 1, a partial Jacobian matrix consisting

of three blocks, without any coupling between the blocks, is used (the constraints are being neglected in

this illustration). The three blocks can then be solved independently in a Gauss–Seidel type approach.
In method 2, the incomplete Jacobian is constructed using one large block, representing the coupled

fluid-elastic problem, and a separate, uncoupled block representing the remeshing or remapping

problem. The full Jacobian, with coupling between the blocks, is used for method 3. The purpose of

this illustration is to show that method 1 is the cheapest to solve computationally, but the inexact

Jacobian may slow the convergence of Newton�s method. In contrast, method 3 uses the exact Jaco-

bian, but is the most expensive to solve computationally. The appropriate choice depends on the

problem one is trying to solve. In this paper, all three methods using a FOSLS formulation are

considered.
The matrix for solving the coupled fluid-elastic equations for methods 2 and 3 is neither symmetric nor

positive definite if the standard Bubnov–Galerkin finite element method is used [1]. A finite element for-

mulation that generates a symmetric positive definite matrix for all three methods is the first-order system

least squares (FOSLS) approach, which is described in the next section. Previously, the FOSLS finite el-

ement formulation to solve the Stokes equations and linear elasticity equations has been shown to yield

optimal discretization error estimates in the H 1 product norm and optimal algebraic convergence [12]. In

addition, if elliptic grid generation (EGG) is used to map the deforming fluid domain to a reference domain,

the FOSLS formulation has been shown to be H 1-elliptic, providing optimal multigrid convergence [13]. In
summary, FOSLS provides optimal overall convergence properties for each of the three parts of the fluid/

elastic coupled system separately. Our aim now is to test the approach on problems combining fluid, elastic,

and mesh generation together.
2. Coupled fluid-elastic equations

The examples presented in the numerical results section focus on the coupling between a linear elastic
solid and a Newtonian fluid. Linear elastic solids can be described by
�lEDu� ðkþ lEÞrr � u ¼ 0 in XE; ð1Þ

where lE and k are Lam�e constants and u ¼ ðu1; u2Þ is the displacement. Eq. (1) is defined on the original,

undeformed domain using a Lagrangian reference frame. The coordinates for the Lagrangian reference

frame are ðn; gÞ, and the original domain is also called the computational domain in what follows. The

operators are defined as D � onn þ ogg and r � ðon; ogÞT . Eq. (1) can be rewritten in dimensionless form by

defining the following the dimensionless variables (indicated by ^Þ:

n̂ ¼ n

L
; û ¼ u

L
;
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where L is a characteristic length scaling. Multiplying by L=lE gives

�Dû� k
lE

�
þ 1

�
rr � û ¼ 0 in XE: ð2Þ

Newtonian fluids are modeled using the Navier–Stokes equations

�q v � rxvð Þ � rxp þ lFDxv ¼ 0 in Xx; ð3Þ
rx � v ¼ 0 in Xx; ð4Þ

where q is density, p is pressure, lF is viscosity and v ¼ ðv1; v2Þ is velocity. Eqs. (3) and (4) are defined for an
Eulerian reference frame with coordinates ðx; yÞ. The deformed fluid domain is also referred to as the

physical domain. The operators are defined as Dx � oxx þ oyy and rx � ðox; oyÞT . The steady-state traction

matching condition between the regions is

n � rEðuÞ ¼ n � rFðvÞ on Cx; ð5Þ

where rE and rF are the total stress tensors for the elastic solid and fluid, respectively, and n is the outward

unit normal vector on the deformed or physical domain interface.

Eqs. (3) and (4) can be rewritten in a dimensionless form by defining the following the dimensionless

variables (indicated by ^Þ:

x̂ ¼ x

L
; v̂ ¼ v

V
;

p̂ ¼ pL
lFV

; Re ¼ LVq
lF

;

where L is a length scaling,V is a velocity scaling, and Re is the Reynold�s number. Using the new variables,

Eqs. (3) and (4) can be rewritten as

�Re v̂ � rxv̂
� �

�rxp̂ þ Dxv̂ ¼ 0 in Xx; ð6Þ
rx � v̂ ¼ 0 in Xx: ð7Þ

It is important to ensure that the dimensional stresses are matched between the fluid and elastic solid.

However, it is often desirable to match dimensionless stresses, defined as

r̂E ¼ ðrûþ ðrûÞT Þ � k
lE

� �
ðr � ûÞdij ¼

rE

lE

ð8Þ

and

r̂F ¼ ðrv̂þ ðrv̂ÞT Þ � p̂dij ¼
rF L
lFV

; ð9Þ

where dij is the Kronecker delta symbol. Therefore, if Eq. (5) is replaced by

n � r̂EðuÞ ¼ n � r̂Fðv̂Þ on Cx; ð10Þ
then V and L must be chosen so that

lE

lF

¼ V

L
; ð11Þ
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thus allowing the use of dimensionless equations and dimensionless stress matching conditions. The use of a

consistent length scaling, L, between the domains allows the use of a dimensionless position matching

condition along the interface

x̂ ¼ n̂þ û on Cx: ð12Þ

We drop ^ in what follows since only dimensionless variables are considered.

The shape of the fluid domain is not known a priori. Therefore, elliptic grid generation (EGG) is used to

map the deformed fluid region (the physical domain, Xx) back to the original computational region (Xn).

The EGG equations are derived by requiring that the map be bijective and satisfy

Dxn ¼ 0 in Xx; ð13Þ

where n ¼ ðnðx; yÞ; gðx; yÞÞ. Eq. (13) is defined on the unknown physical domain, Xx, but it can be inverted
so that the equation is defined on the two-dimensional computational domain as follows:

ðx2g þ y2gÞxnn � ðxnxg þ ynygÞðxng þ xgnÞ þ ðx2n þ y2nÞxgg ¼ 0 in Xn; ð14Þ
ðx2g þ y2gÞynn � ðxnxg þ ynygÞðyng þ ygnÞ þ ðx2n þ y2nÞygg ¼ 0 in Xn; ð15Þ

where subscripts denote derivatives. The solution to the EGG equations allows Eqs. (6) and (7) to be re-

written so that they are defined on the original computational domain instead of the physical domain.

Eqs. (2), (6), (7), (14) and (15) can be recast as a first-order system of equations by defining a new 2� 2

matrix of variables U ¼ ðUijÞ that represent derivatives of the primary variables. Rewriting linear elasticity,

Eq. (2), as a first-order system gives

U �ru ¼ 0 in XE; ð16Þ
�ðr � UÞT � k
lE

� �
r trðUÞ ¼ 0 in XE; ð17Þ
r� U ¼ 0 in XE; ð18Þ

where trðUÞ ¼ U11 þ U22. For the first-order system, bold letters indicate a vector, capital letters indicate a

second-order tensor, and the shape of zero is implied by the left side. Eq. (18) is added to expose divergence

free errors and to establish H 1 ellipticity [14]. It is important to note that Dirichlet boundary conditions

given by

u ¼ g on CE; ð19Þ

are now supplemented with the additional tangential boundary condition of

s � U ¼ 0 on CE; ð20Þ

where s is the unit vector tangential to the interface with direction oriented clockwise. Neumann boundary

conditions can be rewritten as n � U ¼ b where n is the normal vector to the boundary and b is the specified
flux (cf. [14]). The Neumann and Dirichlet conditions for the fluid and EGG equations are also modified in

a consistent manner.

The first-order system for the EGG equations (14) and (15) is

J �rx ¼ 0 in Xn; ð21Þ
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ðJ�T J�1rÞ � J ¼ 0 in Xn; ð22Þ

r � J ¼ 0 in Xn; ð23Þ

where x ¼ ðxðn; gÞ; yðn; gÞÞ is the mapping from the computational domain to the physical domain (see

Fig. 1) and J is the Jacobian of the mapping. Eq. (22) is nonlinear and illustrates that fluid-elastic coupled

problems are always nonlinear in character, either implicitly or explicitly.
Finally, the first-order system for the Navier–Stokes Eqs. (6) and (7) is, after mapping,

V �rv ¼ 0 in Xn; ð24Þ
ðJ�T J�1rÞ � V � ðJ�1rpsÞT � Reðv � J�1V Þ ¼ 0 in Xn; ð25Þ
a � r trðJ�1V Þ ¼ 0 in Xn; ð26Þ
ðJ�1rÞ � v ¼ 0 in Xn; ð27Þ
r� V ¼ 0 in Xn: ð28Þ

By allowing a ! 1 (i.e., setting V11 ¼ �V22), Eq. (26) is strictly enforced which can accelerate the con-

vergence rate of a multigrid solver by making the operator more diagonally dominant. However, by strictly

enforcing Eq. (26), mass conservation in terms of the variable V is being weighted more heavily than
momentum conservation. The result is less error in mass conservation and more in momentum conser-

vation, which may or may not be desirable.

Dimensionless stress matching condition (10) between the two regions can now be rewritten in terms of

first-order variables:

J�1�n � U
�

þ UT þ k
lE

� trðUÞdij
�
� J�1�n � ðJ�1V þ ðJ�1V ÞT � pdijÞ ¼ 0 on Cn; ð29Þ

where �n is the outward unit normal vector on the undeformed computational interface. The J�1 operator

maps �n to n, the vector normal to the deformed or physical interface. In many cases, it is possible to

compute n directly, which may be desirable to prevent inaccuracies in J�1 from contaminating the traction

matching condition.

The construction of the least-squares functional(s) from the system of first-order equations (16)–(29)

depends on the method chosen to solve the coupled fluid-elastic problem (refer to Fig. 2). For the fully
coupled approach, method 3, the entire system of equations is used to form a single functional:

Gðu;U ; v; V ; p; x; JÞ :¼kU �ruk20;XE
þ k � ðr � UÞT � k

lE

� �
rtrðUÞk20;XE

þ kr � Uk20;XE

þ kJ �rxk20;Xn
þ kðJ�T J�1rÞ � Jk20;Xn

þ kr � Jk20;Xn
þ kV �rvk20;Xn

þ kðJ�T J�1rÞ � V � ðJ�1rpsÞT � Reðv � J�1V Þk20;Xn
þ akr trðJ�1V Þk20;Xn

þ kðJ�1rÞ � vk20;Xn
þ kr � V k20;Xn

þ kJ�1�n �
�
U þ UT þ k

lE

� trðUÞdij
�

� J�1�n � ðJ�1V þ ðJ�1V ÞT � pdijÞk21=2;Cn
: ð30Þ

Here, G is a single nonlinear functional that must be minimized to solve the coupled fluid-elastic problem.
The boundary conditions, other than the traction matching condition, have been omitted from G because
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they can be imposed on the finite element space. Alternatively, these boundary conditions can be enforced

weakly in a least-squares sense by adding additional terms to the functional. We study both in our nu-

merical tests. In G; L2 norms are used for the domain and H 1=2 norms are used for the boundary. In the
numerical implementation, L2 norms scaled by 1=h are used for the weak boundary terms.

To solve the coupled problem using the fully decoupled method (method 1), three different functionals

are created and minimized separately in an iterative process. The first functional, containing the fluid

equations, is

G1ðv; V ; pÞ :¼ kV �rvk20;Xn
þ kðJ�T J�1rÞ � V � ðJ�1rpsÞT � Reðv � J�1V Þk20;Xn

þ akr trðJ�1V Þk20;Xn
þ kðJ�1rÞ � vk20;Xn

þ kr � V k20;Xn
; ð31Þ

where J is initially set to the identity matrix, and is calculated for future iterations by minimizing functional

G3 given below. The second functional, containing the elastic equations and the stress matching condition,

is

G2ðu;UÞ :¼ kU �ruk20;XE
þ kð�r � UÞT � k

lE

� �
rtrðUÞk20;XE

þ kr � Uk20;XE

þ kJ�1�n � U þ UT þ k
lE

� trðUÞdij
� �

� J�1�n � ðJ�1V þ ðJ�1V ÞT � pdijÞk21=2;Cn
; ð32Þ

where V is given from the previous minimization of G1 and J is as before. Finally, using u from the previous

minimization of G2, the third functional consisting of the EGG equations is

G3ðx; JÞ :¼ kJ �rxk20;Xn
þ kðJ�T J�1rÞ � Jk20;Xn

þ kr � Jk20;Xn
: ð33Þ

Note that G2 is linear, so G1 and G3 are the only functionals that must be minimized using multiple

Newton iterations.

Method 2 is a compromise between methods 1 and 3. First, a single linear functional is created that
contains both the fluid and elastic equations

G4ðu;U ; v; V ; pÞ :¼kU �ruk20;XE
þ kð�r � UÞT � k

lE

� �
r trðUÞk20;XE

þ kr � Uk20;XE
þ kV �rvk20;Xn

þ kðJ�T J�1rÞ � V � ðJ�1rpsÞT

� Reðv � J�1V Þk20;Xn
þ akr trðJ�1V Þk20;Xn

þ kðJ�1rÞ � vk20;Xn
þ kr� V k20;Xn

þ kJ�1�n �
�
U þ UT þ k

lE

� trðUÞdij
�
� J�1�n � ðJ�1V þ ðJ�1V ÞT � pdijÞk21=2;Cn

; ð34Þ

where J is initially the identity matrix, and is calculated for later iterations by first minimizing the func-

tional G3.
By recasting the original PDEs as a first-order system, it is now necessary that the original solution be in

H 2 (i.e., ðu; v; xÞ 2 H 2 implying ðU ; V ; JÞ 2 H 1) in order for h-refinement of the discrete finite element

problem to converge to the solution using standard H 1 finite elements. Unfortunately, the model equations

often fail to exhibit such smoothness when difficulties like reentrant corners are present [15]. In such cases,

the FOSLS functional cannot converge to zero as the mesh spacing, h, tends to zero. Further, the error in

the solution is usually global; it is not generally restricted to the local source of the singularity. One method
to handle the singularity is to add the singular functions to the finite element space [16]. Another method,

used in this paper, is to unweight the functional at the source of the singularity (e.g., near the corner with

the singularity). The weighting, determined by the order of the singularity, is
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w ¼ r
R

� �b
; ð35Þ

where r is the distance from the corner, R is the size of the unweighted region (typically 10% of the domain

size), and b is dictated by the strength of the singularity (b ¼ 3=2 is used here). Corner singularities can be

determined a priori from the geometry, or they can be identified using FOSLS because the element con-

tributions to the unweighted functional will be significantly larger in the corner than elsewhere. The
weighting is only used on those terms in a specific corner with a singularity. By using the unweighting, H 1

becomes dense in HðdivÞ \ HðcurlÞ in the weighted functional norm, meaning that standard H 1 basis

functions can be used to approximate the solution.

The equations that are used in the functional (G–G4) are first linearized so that the solution can be found

using a Gauss–Newton approach. The value of the nonlinear functional is calculated after each Gauss–

Newton step to ensure that the nonlinear functional is decreasing to a minimum. A line search in the di-

rection of the Gauss–Newton step could be used to ensure that the nonlinear functional decreases at each

step. However, for all the problems that we tested, no line search was necessary. The functional for the
linearized equations is minimized over the finite element spaces by setting the Gateaux derivative to zero in

the weak sense for each linearized step. A finite element basis is then chosen so that the weak form generates

a matrix problem. All of the simulations presented in the results section utilized a bilinear finite element

basis for all of the variables. The FOSLS formulation allows the solution spaces for the variables to be

chosen independently, and there is no restrictive stability condition to satisfy. As a result, both the pressure

and velocity in the Navier–Stokes equations can be approximated with a bilinear basis. The finite element

solution of the linearized functional is an ‘‘energy-orthogonal’’ projection of the exact solution of the weak

equations onto the finite element space. Moreover, the finite element solution is the minimizer of the lin-
earized functional over the finite element space. The individual components of the functional have been

shown to be locally H 1 equivalent under certain assumptions; see [13] for EGG, [12] for elasticity, and [17]

for Navier–Stokes (assuming that the solution is not at a bifurcation point). Ellipticity has not been proven

for the functionals that combine the components together (G and G3). The functionals G–G4 measure the

first derivative of the error in the primary variables (i.e., velocity, pressure, and displacement), unlike the

error in the L2 sense. Therefore, error characterized by ‘‘wiggles’’ in the solution, which may be small and

hidden in the L2 norm, are large and thus controllable in the functional norm.

Before describing the method for solving the linear system of algebraic equations, it is important to
summarize the many levels of iteration that take place in solving these coupled problems:

• The outermost level consists of cycling between the equations (e.g., fluid, then solid, then mapping equa-

tions for the fully decoupled method) or a Newton iteration for the fully coupled method. In the FOSLS

formulation, this outer process consists of iterating between functionals G1, G2, and G3, or linearizing

the functional G and iterating. This process is referred to as ‘‘outer iterations’’.

• If method 1 or 2 is used (functionals G1–G4), the Navier–Stokes equations (functional G1) and the EGG

equations (functional G3) are nonlinear and must be solved by linearizing the functionals and then iter-

ating. These iterations are referred to as the ‘‘inner iterations’’.
• Finally, the inner most processes are the AMG/CG iterations, to be described in the following para-

graph, that are used to solve the linear system.

The linear system is solved using an algebraic multigrid (AMG) preconditioner [18,19] for a conjugate

gradient (CG) iteration. Under this AMG/CG method, a single V -cycle is used to calculate a preconditioner

for a single CG iteration. Most of the computational cost is associated with the V -cycle. A full multigrid

(FMG) type approach is used to reduce the number of outer iterations performed on the fine grid. This is

accomplished by first performing multiple iterations on the coarser grids, where approximate solutions are

found with relatively fewer calculations. The coarser grid solutions are then used as approximations for the
successively finer grids. Codd [20] showed previously for a FOSLS formulation of the EGG equations that,
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under certain conditions, only one linearization step is required on each grid to achieve accuracy compa-

rable to the finest-level discretization. (Grid refinement is achieved by halving the mesh size, h, resulting in

four times the number of unknowns.) A similar approach is used to obtain the results presented here. First,
four outer iterations are used on the coarsest grid to find a solution there. Then, a single outer iteration and,

if using methods 1 or 2, a single inner iteration, is performed on each successively finer grid until the desired

finest-level is obtained. A second outer iteration can be performed as a check to ensure that the first was

sufficient on the finest grid. The result is a technique in which most of the inner and outer iterations are

performed on coarse grids, where the computational costs are significantly lower.
3. Simple coupled domain

The domain for the first test problem is shown in Fig. 3. For the fluid inlet and outlet, the dimensionless

pressure is set to 1 and 0, respectively, and the velocity in the tangential direction, v2, is set to 0. No-slip

conditions for the fluid are imposed along the bottom and interface boundaries. The elastic solid boundary

conditions consist of zero displacement in both directions along the upper boundary, zero displacement in

the normal direction along the sides, and zero stress on the normal face in the tangential direction (i.e., no

shear stress). For the EGG equations, the nodes along the fluid inlet and outlet are allowed to slide in the

tangential direction, and orthogonality of the grid lines is strictly enforced on the inlet and outlet. All other
EGG boundary conditions are homogeneous Dirichlet conditions, with the exception of the interface,

where the displacement of the nodes is set to the displacement of the elastic material, Eq. (12). The test

problem shown in Fig. 3 was solved using all three methods described in the introduction. For all three

methods, Re ¼ 100, k=lE ¼ 9:3, and a � 1 (i.e., V11 ¼ �V22) were used. Convergence, for all three methods,

was defined as the functional changing by less that 1% between outer iterations.

Fig. 4 shows the solution to the coupled system of equations using the fully coupled approach (method

3). With this method, the full functional, Gðu;U ; v; V ; p;x; JÞ, is minimized to find the solution. As Fig. 4

shows, the pressure is highest at the inlet and lowest at the outlet. The higher inlet pressure causes the elastic
material to be displaced upward near the inlet. Even though Re ¼ 100, the flow is relatively parabolic and

only slightly downward. Fig. 5 is the solution to the same coupled problem, only here we used the fully

decoupled method (method 1). No single functional is minimized in this case. Instead, a series of mini-

mization problems are solved until the iterations converge to a solution. The solutions for both methods are

very similar, and as the mesh size approaches zero, the solutions become identical. The difference in practice

is primarily a consequence of the fact that method 1 tends to shift error from the fluid equations to the

mapping equations. Therefore, if the fully coupled approach is used, proper scaling between the functional
Top Surface

Wall (no slip)

Elastic
Side

Elastic
Side

Newtonian Fluid

Interface (traction matching condition)

OutletInlet

ξ

η

         Elastic Solid

Fig. 3. Simple coupled domain. A coupled problem with a linear elastic solid above a Newtonian fluid. Both domains have an aspect

ratio of 5:1. The dimensionless pressure at the inlet is set to 1 and 0 at the outlet.



Fig. 4. Solution of the simple rectangular domain problem using the fully coupled method (method 3). The higher pressure at the inlet

displaces the solid upward.

Fig. 5. A second solution for the simple rectangular domain using the fully decoupled method (method 1). The solution is almost

identical to the solution from the fully coupled method.
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terms associated with Navier–Stokes and the functional terms associated with EGG is important. For this
problem, no scaling was required or used because the equations, in non-dimensional form, are correctly

scaled. The shifting of error phenomena for the fully coupled method also explains why the solutions are

identical when the mesh spacing is zero: there is no error to shift.

The numerical performance of the FOSLS finite element formulation with an AMG/CG solver on the

simple coupled domain is summarized in Fig. 6. For the decoupled methods (method 1 and 2), the func-

tionals of the individual pieces are added together in an attempt to measure the total error in the solution.

Because the problem is properly non-dimensionalized, the value of the functional, which represents the

error in the solution on a given grid, is independent of the solution method chosen. The small differences
that are present likely result from small differences in the accuracy of the solution to the discrete problem.

In other words, the discrete problem is never solved exactly using AMG/CG, only approximately so that

the solution is within about 10% of discretization error. The cost of solving the problem on a given mesh is

highest for the fully coupled method. This is somewhat surprising since AMG/CG is an optimal solver (i.e.,

the computational cost is proportional to the number of unknowns). However, there is some additional

computational overhead associated with the larger matrix that results in slightly increased cost. Further, the

differences between the methods appear to diminish as the mesh is refined. It is not known if the fully

coupled method tends to become the most efficient computational method with very fine grids, but this is
considered unlikely because it always requires the largest matrix.

The performance of the AMG/CG solver can be measured by the convergence factor for the V -cycle/CG
iterations, defined as the relative decrease in the residual per V ð1; 1Þ-cycle/CG iteration. The computational



Table 1

Convergence rates for the AMG/CG solver for the simple coupled domain

Navier–Stokes Elasticity EGG

Decoupled 0.60 0.85 0.20

Mapping decoupled 0.87 0.20

Coupled 0.82

The three different rates for the decoupled problem correspond to the rate for the Navier–Stokes equations, elasticity equations,

and the EGG equations.

Fig. 6. The total functional (error) for different different CPU times on the first test problem. Each of the three methods is shown, and

the solution was obtained on meshes of 16� 8, 32� 16, 64� 32, 128� 64, and 256� 128.
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costs of a single V ð1; 1Þ-cycle is equal to the cost of two to three Gauss–Seidel iterations on the finest grid.

In other words, if the convergence factor is 0.50, the cost of reducing the residual by 50% is of the same

order as a couple of Gauss–Seidel iterations. The convergence rate given is from the finest grid used, but

since there was no significant change between the two finest grids, the convergence rate is not expected to

grow as the mesh size goes to zero. Table 1 summarizes the convergence rates for each of the three methods.

The highest convergence rates correspond to the equations associated with the elastic domain. The lowest

rates are associated with the EGG equations, which is not surprising since they are closely related to
Laplace�s equation. Clearly, improvements to the solver performance on the elasticity equations would be

the most valuable.
3.1. Nonlinear material laws

One of the major limitations of the equations utilized in this paper is the assumption of a completely

linear elastic material, which is only appropriate for a select group of materials undergoing small strains

and small displacements. It is important to note, however, that nonlinear elasticity equations would not
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significantly increase the computational costs because the additional iterations could mostly, if not entirely,

be performed on the coarse grid. Further, while nonlinear materials are the subject of a future paper,

simulations have been performed on the simple rectangular domain using a neo-Hookean material law [21].
For this problem, the computational costs increased by less than 2% for the fully coupled method, and the

value of the functional also change by less than 10%.
4. L-shaped domain

Almost all problems that involve a mechanical coupling between a fluid and solid also require a more

complex domain than that used in the previous section. Here we look at a mechanically coupled system on
an L-shaped domain (Fig. 7). The inner part of the ‘‘L’’ is the elastic solid, which is fixed along its outer

edge. The inner edge of the solid is the interface between the fluid and solid, and it has a traction matching

boundary condition. The ends of the solid domain are fixed in the normal direction but are allowed to slide

in the tangential direction through the use of a boundary condition that enforces no tangential stress. For

the fluid domain, the inlet pressure is set to 1.0 and the outlet pressure is set to zero. The tangential velocity

at the inlet and outlet is also set to zero. The outer edges of the ‘‘L’’ domain have symmetry type boundary

conditions, which consist of zero normal velocity and zero tangential stress. Because of the symmetry

conditions, this L-shaped domain can be considered to be one quarter of a cross-shaped domain that has
two inlets and two outlets (see Fig. 8).

The discrete solution for the L-shaped domain from a 40� 20 mesh, duplicated so that is shows the full

symmetric flow for the cross-shaped domain, is shown in Fig. 8. This simulation used a � 1 (i.e.,

V11 ¼ �V22), Re ¼ 20, and, for the solid, k=lE ¼ 6:0. The pressure is highest at the inlet, so the walls near

there are compressed and thinner. The shear from the fluid displaces some of the elastic solid from the

corner region toward the outlet, and the solid near the outlet is not significantly displaced because the stress

is close to zero. The flow is parabolic at the inlet and outlet, and it remains laminar due to the relatively low

Reynold�s number. If the Reynold�s number is set too high, the flow will not be laminar and the assumption
of symmetry will be violated.
Fig. 7. The L-shaped domain for a coupled problem with a linear elastic solid wall and Newtonian fluid. The upper boundary and the

right boundary have symmetry boundary conditions so that the domain represents the lower quarter of the cross-shaped domain. The

outer edge of the elastic solid is assumed to be fixed.



Fig. 8. The cross-shaped connection with inflow on the top and bottom and outflow on the sides. The simulation was run using the

mapping decoupled method and was only run on a quarter of the symmetric domain, but was duplicated to show the full connection.

Fig. 9. The total functional (error) for different different CPU times on the L-shaped domain problem. Each of the three solution

methods is shown, and the simulation was run on meshes of 20� 10, 40� 20, 80� 40, and 160� 80.
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Table 2

Convergence rates for the AMG/CG solver for the L-shaped domain

Navier–Stokes Elasticity EGG

Decoupled 0.60 0.90 0.55

Mapping decoupled 0.90 0.55

Coupled 0.85

The three different rates for the decoupled problem correspond to the rate for the Navier–Stokes equations, elasticity equations,

and the EGG equations.
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The numerical performance of each of the three possible solution methods using a FOSLS formulation is
summarized in Fig. 9. As with the previous test problem, the computational cost is highest for the fully

coupled method, but, again, the difference in cost between the methods decreases as the problem size is

increased. The differences in error for a given mesh were significant between the different methods. The sum

of the functionals for the three parts (Navier–Stokes, elasticity, and EGG) of the fully decoupled method

had the largest error. The fully coupled method, however, is guaranteed to find the minimum error for the

full system of equations, and that is reflected in the results. Unfortunately, with the fully coupled method,

error can be effectively transferred from one set of equations (usually Navier–Stokes) to another set of

equations (usually EGG). So the mapping is slightly distorted to reduce the error in the mapped Navier–
Stokes equations. This phenomena can be reduced through the use of scaling, but this was not used here for

pedagogical reasons. Finally, the differences in error between the methods vanishes as the mesh size tends to

zero if all singularities are properly unweighted, and, in this case, the error for all three methods appear to

be vanishing at similar rates.

The performance of the AMG/CG solver on the L-shaped domain problem is consistent with the results

on the simple rectangular domain as shown in Table 2. The primary difference is the increase in the con-

vergence factor for the EGG equations. The mapping in this case is more distorted and the EGG equations

are less easily solved on non-convex domains.
5. Conclusions

Mechanically coupled systems consisting of a flowing fluid and a linear elastic solid have been solved on

two different domains. The first was a simple rectangular domain with the elastic material above the fluid.

The second was L-shaped with the inner edge of the ‘‘L’’ being curved. In both cases, the FOSLS finite

element formulation of the model equations achieved the two desired objectives:
• optimality in the sense that the computational costs were proportional to the number of fine grid degrees

of freedom, and

• sharp error measure provided by the functional.

The first objective was realized, in part, because most of the outer iterations were performed inexpen-

sively on a coarse grid. This fact suggests that the transition to problems with more nonlinearity, including

nonlinear elasticity, should not dramatically increase computational cost.
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